A Case Study on the Importance of High-Resolution Site Characterization in Determining a Good Remediation Technology and Finding Target Zones for Remediation

> Opelika Power and Light Facility UST Incident 93-02-19

Presented to: ADEM 27th Annual UST Assessment and Remediation Conference Virtual Conference, June 16, 2021

Presented by:

Sam Beckum, P.G. Project Manager EMC, Inc. John Sohl, Columbia Technologies Richard Smith, SMME, Inc.

Sam Beckum, P.G.

2027 Chestnut Street, Montgomery, Alabama 36106, 334-265-4000

Engineers • Geologists • Scientists

Site Introduction

• Location of site: Opelika, Alabama

• Gasoline release discovered in 1992 during UST closure

- Several investigations have been conducted including
 - Preliminary
 - Secondary
 - Data Acquisition
 - Groundwater Monitoring
- ARBCA site-specific target levels were developed for the site

Subsurface at the Site

Soil

- Saprolite derived from metamorphic rocks of the Opelika Complex
 - Clay, silt, and sand layers
 - Low permeability, but not as impermeable as pure clay

Groundwater

- Benzene in several wells has commonly exceeded the source area target level (0.578 mg/L)
- Naphthalene has periodically exceeded the point-ofcompliance target level in one downgradient well
- Other chemicals-of-concern have only rarely exceeded target levels

Remediation methods were tried

- Mobile Extraction Events
 - 34 were conducted

- In-Situ Chemical Oxidation (ISCO)
 - Several phases were conducted

Mobile Extraction Events

- 34 events were conducted from 2006 through 2016
- Most were 8-hour
- Most were conducted as part of the 2007 CAP implementation, but 3 were conducted just prior to ISCO events
- 20,000 gallons of liquids recovered
- 250 gallons of gasoline equivalent recovered (calculated from vapor emissions)

Benzene concentrations did not decrease in wells with the highest concentrations

- Benzene GRP Source SSTL = 0.578 mg/L
- RW6
 - 2008 average benzene concentration = 21.633 mg/L
 - 2014 average benzene concentration = 26.500 mg/L

Benzene concentrations did decrease in some wells with lower initial concentrations

- RW1
 - 2008 average benzene concentration was 0.232 mg/L
 - 2014 average benzene concentration was <0.001 mg/L (BDL)

In-Situ Chemical Oxidation (ISCO) • Several phases were conducted:

- August 2014 5 days of injection
- November 2014 5 days of injection
- April 2015 5 days of injection
- November-December 2015 5 days of injection
- March 2016 5 days of injection
- August 2016 4 days of injection

ISCO Actual Totals vs Recommended

• <u>Total Injected:</u> 5,270 pounds

 <u>Total Recommended:</u> 8,370 pounds of chemical Benzene decreased in some wells, but long-term averages showed little change

- MW9
 - 2013 average benzene was 3.413 mg/L
 - 2017 benzene was 3.900 mg/L
- RW6
 - 2013 average benzene was 26.433 mg/L
 - 2017 benzene was 25.400 mg/L

Factors that may have limited the effectiveness of the extraction events and ISCO events at this site

- Tightness of the soil
- ISCO recommended amount of chemicals was not applied
- Incorrect zones targeted vertically and horizontally
 - IW screens for ISCO were 15' length and set 6' - 21' bgs
- Incorrect implementation
 - Maybe should have used direct-push instead of pre-installed IWs

We have a dilemma

We have tried a couple of remediation techniques that did not have the desired results

What do we do next?

The answer is:

- High-Resolution Site-Characterization
- Based on the HRSC data, we chose PHOSter as the remediation technology

BETTER DATA. DEEPER UNDERSTANDING. MORE SUSTAINABLE OUTCOMES.

LEARN MORE

Better Clarity Through Higher-Resolution

John H Sohl III www.columbiatechnologies.com jsohl@columbiatechnologies.com +1-301-455-7644

HRSC Approach

- WHERE IS THE RESIDUAL LNAPL?
 - Leverage the existing data
 - Map the residual LNAPL with OIP or LIF
- WHAT SOIL DOES THE LNAPL RESIDE IN?
 - Hydraulic Profiling Tool (HPT)
 - Storage low permeability or Transport generally NOT on older sites
- WHAT IS THE MASS & VOLUME OF THE RESIDUAL LNAPL?
 - Requires high-resolution *saturated* soil sampling
- WHAT IS THE EXTENT OF THE DISSOLVED PHASE PLUME?
 - MiHpt and Discrete GW Sampling
- REAL-TIME INFORMATION
 - Project Quality Control and Efficient Decision-Making

Challenges to MEME / ISCO Approach

- Inaccurate measurement of total hydrocarbon mass – requires saturated soil samples and TPH
- LNAPL trapped in low permeability soils difficult for MEME or gravity feed of ISCO
- Extended screen interval on recovery wells ineffective vacuum extraction, draw down water table, extends smear zone of hydrocarbons

3D Conceptual Site Model

HRSC Conclusions

- 4300 cu-ft of residual LNAPL mass identified (mass under the building not yet determined)
- LNAP was further "upgradient" than recognized
- LNAPL was present as deep as 33-ft
- LNAPL was trapped in low permeability soils

How should we measure performance?

- Benzene concentration
- Dissolved oxygen
- Oxygen or nutrient consumption
- Microbial populations
- Mass removal vs time or \$\$
- Sustainability metrics (energy use, water, waste, carbon – travel)

- Gas-phase nutrient injection to stimulate indigenous bacteria cell division and metabolism.
- Independently controlled, pulsed air sparge. Flows from 0.5 to 2.0 cfm per injector.
- PLC controlled dosage:
 - > Air/Oxygen
 - > Nitrous Oxide
 - > Triethyl-phosphate
 - > Methane/Propane/Butane

Building a Population

- Bacteria Nutrient Molar Ratio: C₆₄H₈₅O₂₃N₁₃P
- Addition of Nitrous Oxide and TEP slow dose/low dose.
- Establish Cell Counts of more than 10⁴ cells/mL.
- Build Aerobic Population until Respiration Rates are Maximized. Establish an Oxygen Demand.
- Cease nutrient addition when active sparge zone DO≈2 mg/L.

Census qPCR Results Cells/mL

Support of Aerobic Respiration

- $2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O + \Delta G$
- Adjustable Intermittent Sparge Well Operation.
- Average Delivery of 120-150 Pounds of O₂ per Month per Well (based on 10' submergence).
- Design Treatment Rate of 10 # O₂ / # BTEX.

Graphic by: Man D Wolfe Based on data from: Ballou, D.P., and D.P. Bate (1988) Oxidases and related redox systems. Progress in Clinical and Biological Research 274, 211-226.

C₆₄N₁₃P Assuming Target Cell Mass 100 mg/L. Stoichiometry: 11 # Nitrous Oxide per Well 3.6 # TEP per Well $2C_{10}H_{22} + 31O_2 \rightarrow 20CO_2 + 22H_2O$ Decane Oxidation $3.5 \# O_2/\#$ Hydrocarbon Real-Life: 128 # Nitrous Oxide 2 Gallons TEP 50,000 # O₂ 40,000 kWh \$5,200 Total Power Cost

P&ID

- PLC Controlled.
- Independent gas flow regulation.
- Isolatable nutrient and co-metabolite delivery.
- Cellular comm. to/from auto-dialer.

Process Control Testing

- Recommend monthly field analysis of DO, pH and nutrients for process control.
- Can include qPCR to confirm target bacteria populations are forming.

Opelika Power & Light UST 93-02-19

Soil Sampling Data from RW and ChemOx IW Install

- Smear zone sampling at 8' to 11'.
- Estimated less than 1000 # as BTEX (based on 3' thick impacted zone).

BTEX in **Groundwater 2018**

Assuming 10' of • impacted aquifer thickness total mass in water estimated at 45#.

Smith Monitoring & Maintenance Engineering Inc.

Smith Monitoring & Maintenance Engineering, Inc. Decatur, Georgia 30030 rick@smmeinc.com PHOSter IW Layout 8 Points Opelika Light & Power Opelika, Alabama for Environmental-Materials Consultants, Inc.

• Slight NAPL down-gradient and potential migration below the supply building.

Hi-Res Assessment Results 2018

- LNAPL detected from 6' to 18' below grade.
- Extended PHOSter IW design depth to 40' below grade.

November 2019

We are currently at about 18 months into using PHOSter

- Most wells have shown decreases in benzene concentrations
 - RW6's benzene concentration dropped from 19.200 mg/L average for 2019 to 0.835 mg/L average for most recent three samplings.
- Some wells have shown decreases, but not as pronounced
 - IW6's benzene concentration was 14.400 mg/L average for 2019 and was 8.150 mg/L average for most recent three samplings.
- Some wells have shown some fluctuations in benzene concentrations
 - IW13's benzene concentration was 23.800 mg/L average for 2019, had a substantial decrease, but was 26.300 mg/L for the most recent sampling.

DO vs Time (since starting PHOSter)

Benzene vs Time

Benzene vs Time (since starting PHOSter)

Date

Cumulative Costs vs Time

HRSC